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A fully relativistic treatment of Bernstein waves in an electron-positron pair plasma has remained too
formidable a task, owing to the very complex nature of the problem. In this paper, we perform contour
integration of the dielectric-response function and numerically compute the dispersion curves for a uniform
magnetized relativistic electron-positron pair plasma. The behavior of the dispersion solution for several cases
with different plasma temperatures is highlighted. In particular, we find two wave modes that exist only for
large wavelengths and frequencies similar to the cyclotron frequency in a moderately relativistic pair plasma.
The results presented here have important implications for the study of those objects where a hot magnetized
electron-positron plasma plays a fundamental role in generating the observed radiation.
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I. INTRODUCTION

Relativistic electron-positron pair plasmas are found in
many astrophysical objects such as neutron star magneto-
spheres �1�, relativistic jets, and accretion disks associated
with black holes in the centers of active galactic nuclei �2,3�.
To study the properties of the pair plasma in these objects it
is imperative to employ a fully relativistic approach. In the
study of magnetized pair plasmas one finds that a number of
oscillation modes exist �see �4,5��. The focus of this study is
to investigate the behavior of Bernstein modes in a uniform
magnetized relativistic e+e− pair plasma. Bernstein waves are
electrostatic undulations that are always localized near the
electron cyclotron harmonics in an electron-ion plasma �6�.
These waves can propagate undamped only very close to the
plane perpendicular to the static magnetic field. Such waves
are of great interest since, in an electron-ion plasma, they
strongly interact with the electrons and are excellent candi-
dates for plasma heating and driving currents as compared
with the electromagnetic �O�rdinary and the e�X�traordinary
modes �7�.

The nonrelativistic treatment of Bernstein waves in an
electron-ion plasma is well understood �8–11�. It is the fully
relativistic case that is marred by difficulties such that a
closed-form analytic solution is hard to formulate or maybe
even impossible. Many workers have expounded on the fully
relativistic treatment of electron Bernstein waves �12�, the
ultrarelativistic case �13�, and have successfully obtained ap-
proximate dispersion relations �14–16�. The Bernstein mode
in a weakly relativistic pair plasma has been investigated by
the authors of �17�, where they have found closed curve dis-
persion relations that are remarkably distinct from the clas-
sical case. All of these studies either discuss the fully rela-
tivistic case to the point where no closed-form analytic
solution is found, or simplify the analysis by either treating
the limiting case only or employ various approximations that
may not yield an entirely correct result.

In this paper, we present a fully relativistic treatment of
Bernstein waves in a pair plasma and provide dispersion
curves that highlight the transition from the weakly to
strongly relativistic regime. The rest of the article is orga-
nized as the following. We derive the key equations for the
dielectric-response tensor and describe our numerical ap-
proach to the problem in the following section �Sec. II�. In
Sec. III, we present the main results of this study along with
a discussion on how the solution behaves as a function of the
plasma temperature and plasma frequency. In the final sec-
tion �Sec. IV� we highlight some of the important points of
the study.

II. RELATIVISTIC DISPERSION RELATION

The evolution of the distribution function, f�r ,p , t�, of
plasma particles in phase space is governed by the Vlasov
equation, which in the momentum representation is given as

� fs

�t
+ v · �rfs + qs�E + v � B� · �pfs = 0, �1�

where s indicates different species constituting the plasma.
To investigate the behavior of small amplitude waves with
oscillation periods much smaller than particle collision
times, we make the following assumptions:

fs�r,p,t� = f0s�p� + f1s�r,p,t� , �2�

B = B0 + B1ei�k·r−�t�, �3�

E = E1ei�k·r−�t�, �4�

where the subscripts 0 and 1 indicate equilibrium and per-
turbed functions, respectively. Furthermore, we restrict the
equilibrium distribution function to only depend on the mo-
mentum of the particles to account for the anisotropy intro-
duced by the ambient static magnetic field. As a result, we
write the Vlasov equation in its linearized form
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d

dt
f1s = − qs�E1 + v � B1�ei�k·r−�t� · �pf0s. �5�

The main idea here is to calculate the perturbation of the
distribution function by integrating along the unperturbed or-
bits from some time in the past, say t0, to the present time t.
Next, we use Ohm’s law to write the current density induced
by the perturbed distribution

J = �
s

qs

ms
� psf1s�r,p,t�d3p = �

s

�= s · E1. �6�

This enables us to write the effective dielectric permittivity
tensor in terms of the conductivity tensor �= �8�,

�=��,k� = �0�I −
�=

i�s�0
� . �7�

In the fully relativistic approximation, the energy and linear
momentum of particles in the rest frame of the plasma are
given as

E = �mc2 = 	p2c2 + m2c4,

p = �mv , �8�

where the Lorentz factor is given in terms of the momentum
as

� = �1 +
p2

m2c2�1/2
. �9�

The complete details of the rest of the calculation can be
found in various monographs and textbooks on plasma
waves �see �8,10��, and we only provide the salient points of
the derivation in what follows. We adopt B0=B0ẑ for the
equilibrium magnetic field and restrict both the wave vector
and the perturbed electric field to be k=k�x̂ and E1=E1x̂ as
dictated by the purely electrostatic mode, where the per-
turbed magnetic field B1 vanishes. After some mathematical
manipulations we arrive at the relativistic dielectric tensor,

�=��,k� = 
 �xx �xy 0

− �xy �yy 0

0 0 �zz
� , �10�

where the different components have been summed over
both species, e+ and e−, of the pair plasma,

�xx = �0�1 +
4�q2m2

k�
2 m�0

�  ��a

sin ��a
J�a���J−�a���

− 1� �

p�

� f0�p�
�p�

p2 sin �dpd�� ,

�yy = �0�1 +
4�q2

�m�0
� p�

�c

� f0�p�
�p�

 �

sin ��a
� J�a� ���J−�a� ���

+
a

��2�p2 sin �dpd�� ,

�zz = �0�1 +
4�q2

�m�0�c
� p�

� f0�p�
�p�

�
�J�a���J−�a���

sin ��a
p2 sin �dpd�� ,

�xy = i
4�q2m2

mk�
2 � �

p�

� f0�p�
�p�

p2 sin �dpd� . �11�

In the above, � and � subscripts denote components parallel
and perpendicular to the equilibrium magnetic field, J�a��� is
the Bessel function of noninteger order, and J�a� ��� is the
derivative of the Bessel function with respect to �, where �

=
k�p�

qB , and a= �
�c

with �c denoting the nonrelativistic cyclo-
tron frequency. Finally, one finds the dispersion relation, �
=��k�, by setting the dielectric-response function to zero,

���,k� = k · �=��,k� · k = 0, �12�

which in our case simply picks out the �xx component. To
keep the treatment fully relativistic we adopt the Maxwell-
Boltzmann-Jütner distribution function �8,18�,

f0�p� = �4�m3c3�−1 	

K2�	�
e−	�, �13�

where

	 �
mc2

kBT
�14�

is the ratio of the rest mass energy of the particles to that of
their thermal energy, and K2 is the modified Bessel function
of the second kind and of order two. Also, the equilibrium
plasma distribution has been normalized to unity,

1 = n0 =� f0�p�d3p . �15�

Taking the derivative of f0�p� with respect to p� and p�

yields

� f0

�pi
= −

	2

4�m5c5K2�	�
pi

�
e−	�, �16�

where i can be replaced by either � or � components. At this
point, we can carry out the integration over the polar angle
and by defining 
=

k�p

qB we can write �xx as the following:

�xx = �0�1 −
�p

2	2

k�
2 m3c5K2�	��0

�

p2e−	�

� �
0

�  ��a

sin ��a
J�a�
 sin ��J−�a�
 sin ��

− 1�sin �d�dp� , �17�

where the nonrelativistic plasma frequency is defined as
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�p
2 =

n0e2

m�0
. �18�

Next we use the following Bessel function identity �8�:

�
0

�

sin �Ja�b sin ��J−a�b sin ��d�

=
2 sin �a

�a 2F3�1

2
,1;

3

2
,1 − a,1 + a;− b2� �19�

to express the integral over the polar angle in terms of a
hypergeometric function, and redefine all constants and vari-
ables to make �xx dimensionless,

p̂ =
p

mc
k̂� =

k�c

�c
�̂ =

�

�c
,

�̂p =
�p

�c

 = 
̂ = k̂�p̂ a = �̂ . �20�

Then, we can write �xx as the following where the integral
now is just over the dimensionless momentum p̂:

�xx = �0�1 −
2�̂p

2	

k̂�
2  	

K2�	��0

�

p̂2e−	�

� 2F3�1

2
,1;

3

2
,1 − ��̂,1 + ��̂;− 
̂2�dp̂ − 1�� .

�21�

In writing this equation we have made use of the following
integral identity:

�
0

�

p̂2e−	�dp̂ =
K2�	�

	
. �22�

The integrand in Eq. �21� consists of a hypergeometric
function which is singular for 1−��̂=−n for integer n
=0,1 ,2 , . . . ,. This singular behavior, as we shall see, is as-
sociated to the phenomenon of cyclotron resonance where
plasma particles are in resonance with the wave at the cyclo-
tron harmonics. Also, this very resonance poses a real chal-
lenge for any numerical computation of the integral and has
to be dealt with using advanced numerical techniques. Since
our interest lies in finding the oscillation frequency �̂ as a

function of the wave number k̂�, it is clear from Eq. �21� that
this operation is explicitly nonlinear. Therefore, one is left
with an exercise of root finding for a given �̂. Alternatively,
one could simplify the analysis by making some approxima-
tion. However, by adopting such methodology one risks los-
ing the subtleties of the solution and may obtain something
that is not entirely correct, as we show in the weakly relativ-
istic case. We remain optimistic and decide to compute the
dispersion relation using a brute force method, which is by
simply integrating Eq. �21�.

Numerical approach

As the Lorentz factor is a function of momentum, the
integrand remains singular over the domain of integration. A

workaround for avoiding the singular points on the real axis
is by analytically continuing the momentum to the complex
domain. We can easily shift the integration contour below the
real axis by writing p→p− i�, where � is reasonably small.
Ideally, one would like to keep the contour on the real axis
but go below the singular points to avoid divergence while
following the Landau prescription �19�. A similar result can
be achieved by closing the contour of integration in the
lower half of the complex plane as shown in Fig. 1.

Here we are interested in finding the principal value of the
integral in Eq. �21�, which is given by the following:

P.V.�
0

�

dp̂f�p̂� = i� �
Residue

R0 − �I2 + I3 + I4� , �23�

where

I2 = �
�

�−i�

dp̂f�p̂� � 0,

I3 = �
�−i�

−i�

dp̂f�p̂� ,

I4 = �
−i�

0

dp̂f�p̂� , �24�

and R0 is the residue from the poles on the Re�p̂� axis. In the
above, for I2 we note that the integrand vanishes sufficiently

rapidly for large p̂ due to the exponential. When �̂ and k̂�

are kept real, one finds that R0 is also real, which makes the
first term on the right in Eq. �23� purely imaginary. However,
the second term has both real and imaginary components,
and the negative sign is indicative of the clockwise sense of
the contour. Since the left-hand side is real then so must be
the right, which suggests that the imaginary components can-
cel each other and yields the following result:

P.V.�
0

�

dp̂f�p̂� = − Re�I3 + I4� . �25�

Although it appears that with the given prescription one
can have an arbitrarily large �, we find that the integral does
start to lose its accuracy as � approaches unity. Therefore, we
set �=0.1 for all numerical computations. To compute the
integral numerically over the hypergeometric function we

Re p̂

Im p̂

δ

FIG. 1. Contour of integration in the complex p̂ plane used to
avoid singular points of the integrand. Only the general case is
shown here to guide the reader.

DISPERSION RELATIONS FOR BERNSTEIN WAVES IN A… PHYSICAL REVIEW E 80, 036407 �2009�

036407-3



used MATHEMATICA �V.6� for it is capable of calculating gen-
eralized hypergeometric functions. The poles of the inte-
grand were dealt with by employing a globally adaptive in-
tegration routine available in MATHEMATICA. To speed up the
integration over the singular points we used the Double Ex-
ponential Quadrature singularity handler built into the inte-
gration routine of MATHEMATICA.

III. PROPERTIES OF DISPERSION CURVES

In the nonrelativistic case of the electron Bernstein modes
in an electron-ion plasma, one finds that there are no wave
modes below the first harmonic. The dispersion curves above
the hybrid frequency are all bell shaped with local maxima
corresponding to stationary modes. Furthermore, band gaps
are present above the hybrid frequency between each disper-
sion curve. It is not at all surprising to say that the picture is
remarkably different in the relativistic pair plasma scenario.
We plot the dispersion curves for a relativistic pair plasma in
Figs. 2–4 for different values of 	=1,5 ,20, respectively. We
assume a plasma frequency of �̂p=3 for these plots.

The dispersion relation for a moderately relativistic pair
plasma, shown in Fig. 2, clearly has two wave modes. This is
further accompanied by the existence of two stationary

modes with vanishing group velocity �d�̂ /dk̂�=0� at two

distinct oscillation frequencies for k̂�=0. Also, above the
higher stationary mode there are two wave-number solutions
for a given �̂. This behavior persists in the case of a mildly
relativistic pair plasma, shown in Fig. 3. However, one sees
some drastic changes in the shape of the dispersion curves as
the particles lose their energy. We readily notice the appear-
ance of the curve near the cyclotron fundamental frequency.
This marks the onset of the cyclotron resonance where the

plasma particles oscillate at the same frequency as the per-
turbing electrostatic wave. Although not very significant at
this point, the higher harmonic resonances also start to
emerge. Furthermore, the dispersion relation now extends to
higher wave numbers and the turnover from the lower wave
mode into the upper mode is not as sharp as it was in the
previous case. We also notice a shift in the stationary modes,
and we discuss this point in a later section.

The authors of �17� reported the dispersion relation for a
weakly relativistic pair plasma. They found island shaped

k̂⊥

ω̂

0 1 2 3 4

1
2

3
4

FIG. 2. Dispersion curve for a relativistic plasma with 	=1,
�̂p=3. Hatted variables are expressed in terms of the nonrelativistic
cyclotron frequency �c. See text for more detail.

k̂⊥

ω̂

0 1 2 3 4 5 6 7

1
2

3
4

5

FIG. 3. Dispersion curve for a relativistic plasma with 	=5,
�̂p=3. Hatted variables are expressed in terms of the nonrelativistic
cyclotron frequency �c. See text for more detail.

k̂⊥

ω̂

0 5 10 15 20 25 30

1
2

3
4

5

FIG. 4. Dispersion curve for a relativistic plasma with 	=20,
�̂p=3. Hatted variables are expressed in terms of the nonrelativistic
cyclotron frequency �c. See text for more detail.
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curves occurring mostly between the cyclotron harmonics.
We find a similar solution for the weakly relativistic case,
shown in Fig. 4, but with a few exceptions. First, the disper-
sion curves are no longer closed but extend to higher wave
numbers as they approach cyclotron harmonics. This behav-
ior is very similar to what we observe in the case of a non-
relativistic electron-ion plasma. However, in the pair plasma
case the solution does not extend to an infinitely large wave
number, and there are not infinitely many wave modes as we
increase �̂. There appears to be a cutoff in frequency, the
point where the overturn takes place, beyond which there
does not exist any solution. Second, there exists a wave
mode below the fundamental cyclotron harmonic, which was
absent in the solution provided in �17�. In fact, we find that a
solution below the cyclotron fundamental exists for all cases,
regardless of 	, for �̂p=3 as we show below. This, again, is
in contrast with the nonrelativistic electron-ion plasma where
there is no wave mode below the first harmonic.

In comparison to the moderately relativistic case, the
weakly relativistic case is richer in its behavior as well as
much more structured. The former only has two frequency
modes for a given wavelength, namely, a high and a low
mode, and the latter has many. Moreover, for a moderately
relativistic pair plasma none of the wave modes found in
between the two stationary points �discussed below� extend
to infinitely small wavelengths. In fact, there is a limiting
wavelength above which these modes exist. As reported in
�17�, one can find similar, although much less severe, imper-
fections in the graphics produced by the contouring algo-
rithm. The culprit here is the nonlinearity of the equation
from which the solutions are obtained.

A. Relativistic effects

As the plasma particles become strongly relativistic, with
decreasing 	, the dispersion curves undergo drastic changes.
We now plot all of the dispersion curves shown earlier onto
a single plot and analyze the progression from the weakly
relativistic case to the strongly relativistic one �see Fig. 5�.
The Bernstein waves are strongly absorbed near the cyclo-
tron harmonics in the weakly relativistic limit, where 	1.
This effect is the strongest at the first cyclotron harmonic at
which point the phase velocity of the wave vph→0 and the
wave loses all of its energy in heating up the pair plasma. At
higher harmonics the same phenomenon is repeated, how-
ever with decreased efficiency. Upon increasing the thermal
speed of the plasma particles, the cyclotron resonances be-
come much less pronounced and start to disappear com-
pletely. In a hot magnetized pair plasma no resonant interac-
tion between the Bernstein wave and the plasma occurs, and

the solution occupies only a small region of the �̂− k̂� space.

B. Behavior for small k̂�

Unlike the nonrelativistic electron Bernstein waves, the
behavior of the dispersion curves in the limit of vanishing
wave number is not so straightforward. The hypergeometric
function in the integrand of Eq. �21� can also be written in
the form of an infinite power series �8�,

2F3�a1,a2;b1,b2,b3;x�

=
��b1���b2���b3�

��a1���a2�

� �
m=0

�
��a1 + m���a2 + m�

��b1 + m���b2 + m���b3 + m�
xm

m!
. �26�

We see that for x→0 only the m=0 term has the dominant
contribution. In that case, we find that the hypergeometric
function tends to unity. Consequently, �xx loses its depen-
dence on �̂ because the only place �̂ appears in Eq. �21� is
inside the hypergeometric function. Moreover, this suggests

that �̂�k̂�� is constant in the domain where k̂��1 and Eq.
�21� fails to describe the behavior of the dispersion relation

for vanishing k̂�. In fact, one has to keep terms in the infinite
sum up to order m=2 to obtain any nontrivial solution. How-
ever, upon doing so one finds that the integral, again, is ex-
tremely nontrivial and its solution cannot be expressed ana-
lytically. This is problematic because the dispersion solution
is no longer a smooth function and may become discontinu-

ous for small k̂�.
Nevertheless, this problem can be resolved easily. Upon

cursory inspection of the integrand one finds that it is qua-

dratic in k̂�, making it symmetric under the transformation

k̂�→−k̂�. Furthermore, we demand that the dispersion rela-

tion be continuous at k̂�=0; thus, we employ polynomial
interpolation to determine the y intercept. In all three figures
we use a polynomial of order 2 or 4, depending on the shape
of the curve, to determine the stationary points for vanishing
wave number.

k̂⊥

ω̂

0 5 10 15

1
2

3
4

5

FIG. 5. Dispersion curves for different values of 	 with �̂p=3.
�Solid� The weakly relativistic case with 	=20, �dots� the mildly
relativistic case with 	=5, and the two strongly relativistic cases:
�a� �dash� with 	=1 �b� �dot-dash� with 	=0.5
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C. Behavior for large k̂�

In the weakly relativistic case, one finds wave-particle
resonances occurring at cyclotron harmonics. These reso-

nances extend to large values of k̂� but not to infinity. Intu-
itively, one may argue, by looking at the rest of the disper-
sion solution, that such a behavior is expected as the

dispersion curves start and end at k̂�=0. The plot remains
connected over the whole domain, as is evident in the
strongly relativistic case, and the resonances only extend to

some maximum value of the wave number k̂�
Max. This hy-

pothesis can be ascertained by computing the integral in Eq.

�21� for k̂�1; however for large values of k̂� the calcula-
tion becomes very computationally expensive.

Ideally, one would like to find the asymptotic behavior of
the hypergeometric function in Eq. �21� to simplify the prob-
lem. The asymptotic behavior of the hypergeometric function
can be gleaned by asymptotically expanding the Bessel func-
tion in the integral representation of the hypergeometric
function given in Eq. �20�. The Bessel function expansion for
large arguments is given as �20�

J���z� =	 2

�z
cos�z �

�

2
� −

�

4
� + O�z−3/2� . �27�

Plugging this back into Eq. �20� and carrying out the integral
over the polar angle yields

2

�b
�

0

�

d� cos�b sin � −
�

2
a −

�

4
�cos�b sin � +

�

2
a −

�

4
�

=
cos�a�� + H0�2b�

b
, �28�

where H0 is the Struve function of order 0. For our specific

case, b= k̂�p̂ and a=��̂, and upon substitution of this result
into the dielectric-response function we find

�xx = �0�1 −
2�̂p

2	

k̂�
2  	

2k̂�K2�	�
�

0

�

p̂e−	�

� � ���̂

sin ���̂
��cos ���̂ + H0�2k̂�p̂��dp̂ − 1�� .

�29�

This integral again has a similar singularity for ��̂=n for
integer n. We can further simplify this equation by noting the
leading-order behavior of the Struve function in the limit b
→�, which goes like H0�b��

1
	b

. Then, in this limit the domi-
nant term in Eq. �29� is the cosine term. Although this step is
not justifiable given the limits of integration where the inte-
grand is evaluated for p̂�1, this does not modify the overall

behavior of the dielectric-response function in the large k̂�

limit. Next, we define

I�	,�̂� = ��̂�
0

�

dp̂�p̂e−	� cot����̂� �30�

and solve for �xx=0. After some rearrangement of terms, we

arrive at a cubic equation, which we then solve for k̂�,

k̂�
3 + 2�̂p

2	k̂� −
�̂p

2	2

K2�	�
I�	,�̂� = 0. �31�

To do the integral in Eq. �30� we again employ the same
contour integration scheme as was done earlier �see Fig. 1�.
For 	=20 and �̂=1, which is the strongest resonance of all
occurring at higher cyclotron harmonics, we find a maximum

wave number k̂�
Max�72. We find values of the same order for

resonances at higher harmonics as well. This limit shows the

maximum value of k̂� for which a solution exists using the
simplified dielectric tensor �appropriate for large values of

k̂��. The actual limits to the wave number in the realistic
dispersion relation are typically lower. This exercise demon-
strates that the resonances do not extend to infinitely small

wavelengths, that there is some cutoff at k̂�� k̂�
Max, and that

the dispersion curves remain connected over the whole do-
main. More importantly, one must not forget that this esti-
mate is particularly inaccurate for the strongly relativistic

case where the solution exists for only modest values of k̂�.

D. Stationary modes

There are two stationary modes �vg=d�̂ /dk̂�=0� present

for vanishing k̂� in all the cases shown above. We plot the
evolution of both stationary points as a function of 	 in Fig.
6. For �p=3�c the upper stationary mode remains above the
cyclotron fundamental and the lower stationary mode re-
mains below it for all 	. Contrastingly, in the electron-ion

case a solution exists for vanishing k̂� at all cyclotron har-
monics, except at the fundamental. It appears that the upper
stationary mode turns into the hybrid resonance given by

�̂H
2 = �̂p

2 + 1 �32�

in an electron-ion plasma.
This picture is slightly modified as we lower the plasma

frequency so that it equals the cyclotron frequency, �̂p=1,
while remaining in the weakly relativistic limit with 	=20
�see Fig. 7�. We still find those two stationary points and the
strong resonance at the cyclotron fundamental; however, the
rest of the plot has disappeared, and, interestingly, been re-
placed by a single closed curve. By comparing the present
case to the one treated previously, with �̂p=3, we find that
upon decreasing the plasma frequency the lower branch of
the dispersion curve in the first harmonic band separates
from the upper branch. Also the upper branch in the first
harmonic band connects to the lower branch in the second-
harmonic band. This is the first incidence where a closed
curve solution, like the ones found by the authors of �17�, has
appeared in our analysis. Furthermore, the number of station-
ary modes is now double of what was observed previously.

We also provide a plot of the position of stationary points
in frequency as a function of the plasma frequency for dif-
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ferent values of 	=1,5 ,20 �see Fig. 8�. As the slope of the
curves varies with a change in 	, the upper hybrid frequency,
if one was to associate the upper stationary mode with it,
necessarily depends on the temperature of the plasma, as
shown in Fig. 6. Interestingly, in the case of a hot pair
plasma �	�1� we find that the upper stationary mode ex-
tends below the cyclotron fundamental for �̂p�1. Thus, an
underdense ��p��c� strongly relativistic pair plasma does
not have any Bernstein wave modes above the cyclotron fun-

damental. Another consequence of this situation is that the
two wave modes exist for only small wave numbers and
therefore for extremely large wavelengths. We see that for a
given plasma temperature, the upper stationary mode de-
pends linearly on the plasma frequency for �̂p�1. On the
other hand, the lower mode remains constant.

IV. DISCUSSION

In this article, we investigate the behavior of Bernstein
waves in a uniform magnetized relativistic electron-positron
pair plasma and provide dispersion curves for different val-
ues of the nondimensional reciprocal temperature. The dis-
persion solutions in all cases are found to be remarkably
different than the Bernstein modes found in the nonrelativis-
tic electron-ion case. For a moderately relativistic pair
plasma we find two Bernstein wave modes accompanied by
two stationary modes for vanishing wave number. We do not
find closed curve solutions �17� in all cases but one where
the plasma frequency equals the cyclotron frequency in the
weakly relativistic limit.

As stated earlier, the Bernstein waves in a nonrelativistic
electron-ion plasma propagate undamped in the direction or-
thogonal to the equilibrium magnetic field. This might not be
true for such waves in a relativistic pair plasma. These waves
were found to be very weakly damped in a weakly relativis-
tic pair plasma �21�. In this article, we only report the real
component of �̂ as the imaginary component is quite non-
trivial to calculate for the following reason. With �̂ complex
Eq. �25� does not hold since the principal value of the inte-
gral is no longer purely real. As a result, one must calculate
the residue R0, which itself is a difficult task as the integrand
in Eq. �21� cannot be easily transformed into the following
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4

FIG. 6. Stationary modes at vanishing k̂� as a function of non-
dimensional reciprocal temperature parameter 	. The upper curve
corresponds to the upper stationary mode and the lower curve to the
lower stationary mode. For this plot we assume �̂p=3.
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FIG. 7. Dispersion curves at two different plasma frequencies
with 	=20. �a� For �̂p=3, and �b� �bold� for �̂p=1.
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FIG. 8. Stationary modes as a function of the plasma frequency
at different values of the reciprocal temperature parameter 	. �a�
�Solid� For 	=20, �b� �dash� for 	=10, and �c� �dot� for 	=1.
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form where the singularity arises due to a simple pole of
order m:

f�p̂� =
g�p̂�

�p̂ − p̂0�m , �33�

and where g�p̂� is analytic as p̂→ p̂0. Nevertheless, we do
expect very mild damping of the waves ��̂i��̂r� at least for
the weakly relativistic case as discussed in �21�, where they
find Im��̂� to be the largest on the upper half of the curve
that advances toward the cyclotron harmonics, and relatively
much smaller on the lower half. It remains to be seen if
damping is at all observed in the moderately relativistic case.

The results presented in this article have important impli-
cations for all astronomical objects where a magnetized hot
pair plasma is present, for example radio pulsars �1�, magne-
tars �22�, and pair-instability supernovae �23�.
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